Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 103(3): e3614, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921678

RESUMO

Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open, and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e., berry mass, number of fruits, and fruit density [kg/ha], among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), North America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-2005 (21 studies), 2006-2010 (40), 2011-2015 (88), and 2016-2020 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA).


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Produtos Agrícolas , Flores , Insetos
2.
Ecol Appl ; 31(8): e02445, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34448315

RESUMO

Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of "pollination deficits," where maximum yield is not being achieved due to insufficient pollination, we used an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries and we compared "pollinator dependence" across different apple varieties. We found evidence of pollination deficits and, in some cases, risks of overpollination were even apparent for which fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others in terms of avoiding a pollination deficit and crop yield shortfalls due to suboptimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrated that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help to target local management to address deficits although crop variety has a strong influence on the role of pollinators.


Assuntos
Malus , Polinização , Animais , Abelhas , Produtos Agrícolas , Frutas , Insetos
3.
Ecol Evol ; 10(6): 2979-2990, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32211170

RESUMO

Hairiness is a salient trait of insect pollinators that has been linked to thermoregulation, pollen uptake and transportation, and pollination success. Despite its potential importance in pollination ecology, hairiness is rarely included in pollinator trait analyses. This is likely due to the lack of standardized and efficient methods to measure hairiness. We describe a novel methodology that uses a stereomicroscope equipped with a live measurement module software to quantitatively measure two components of hairiness: hair density and hair length. We took measures of the two hairiness components in 109 insect pollinator species (including 52 bee species). We analyzed the relationship between hair density and length and between these two components and body size. We combined hair density and length measures to calculate a hairiness index and tested whether hairiness differed between major pollinator groups and bee genera. Body size was strongly and positively correlated to hair length and weakly and negatively correlated to hair density. The correlation between the two hairiness components was weak and negative. According to our hairiness index, butterflies and moths were the hairiest pollinator group, followed by bees, hoverflies, beetles, and other flies. Among bees, bumblebees (Bombus) and mason bees (Osmia) were the hairiest taxa, followed by digger bees (Anthophorinae), sand bees (Andrena), and sweat bees (Halictini). Our methodology provides an effective and standardized measure of the two components of hairiness (hair density and length), thus allowing for a meaningful interpretation of hairiness. We provide a detailed protocol of our methodology, which we hope will contribute to improve our understanding of pollination effectiveness, thermal biology, and responses to climate change in insects.

4.
Sci Adv ; 5(10): eaax0121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31663019

RESUMO

Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.


Assuntos
Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Agricultura/métodos , Biodiversidade , Produção Agrícola/métodos , Ecossistema , Humanos , Controle Biológico de Vetores/métodos , Polinização/fisiologia
5.
PeerJ ; 6: e5269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065875

RESUMO

Climate change is altering the phenology of trophically linked organisms, leading to increased asynchrony between species with unknown consequences for ecosystem services. Although phenological mismatches are reported from several ecosystems, experimental evidence for altering multiple ecosystem services is hardly available. We examined how the phenological shift of apple trees affected the abundance and diversity of pollinators, generalist and specialist herbivores and predatory arthropods. We stored potted apple trees in the greenhouse or cold store in early spring before transferring them into orchards to cause mismatches and sampled arthropods on the trees repeatedly. Assemblages of pollinators on the manipulated and control trees differed markedly, but their overall abundance was similar indicating a potential insurance effect of wild bee diversity to ensure fruit set in flower-pollinator mismatch conditions. Specialized herbivores were almost absent from manipulated trees, while less-specialized ones showed diverse responses, confirming the expectation that more specialized interactions are more vulnerable to phenological mismatch. Natural enemies also responded to shifted apple tree phenology and the abundance of their prey. While arthropod abundances either declined or increased, species diversity tended to be lower on apple trees with shifted phenology. Our study indicates novel results on the role of biodiversity and specialization in plant-insect mismatch situations.

6.
Curr Opin Insect Sci ; 26: 82-88, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29764666

RESUMO

Wild and managed bees provide pollination services to both crops and wild plants, and a variety of other services from which humans benefit. We summarize the most important and recent findings on bees as providers of provisioning, regulating and cultural ecosystem services. With comprehensive literature searches, we first identified ten important bee species for global pollination of crops, which include wild and managed honey bees, bumble bees, orchard-, cucumber- and longhorn bees. We second summarized bee-dependent ecosystem services to show how bees substantially contribute to food security, medical resources, soil formation or spiritual practices, highlighting their wide range of benefits for human well-being and to identify future research needs.


Assuntos
Abelhas , Polinização , Animais , Criação de Abelhas , Ecossistema , Humanos , Magnoliopsida
7.
Proc Natl Acad Sci U S A ; 110(21): 8387-92, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23671073

RESUMO

Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables.


Assuntos
Agricultura/métodos , Coffea/crescimento & desenvolvimento , Ecossistema , Polinização , Animais , Humanos
8.
Science ; 339(6127): 1608-11, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23449997

RESUMO

The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Insetos/fisiologia , Polinização , Animais , Abelhas/fisiologia , Flores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...